skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Xiaowen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 16, 2025
  2. Abstract Climate‐driven thawing of Arctic permafrost renders its vast carbon reserves susceptible to microbial degradation, serving as a potentially potent positive feedback hidden within the climate system. While seemingly intuitive, the relationship between thermally driven permafrost losses and organic carbon (OC) export remains largely unexplored in natural settings. Filling this knowledge gap, we present down‐core bulk and compound‐specific radiocarbon records of permafrost change from a sediment core taken within the Alaskan Colville River delta spanning the lastc. 2,700 years. Fingerprinted by significantly older radiocarbon ages of bulk OC and long‐chain fatty acids, these data expose a thermally driven increase in permafrost OC export and/or deepening of mobilizable permafrost layers over the lastc. 160 years after the Little Ice Age. Comparison of OC content and radiocarbon data between recent and Roman warming episodes likely implies that the rate of warming, alongside the prevailing boundary conditions, may dictate the ultimate fate of the Arctic's permafrost inventory. Our findings highlight the importance of leveraging geological records as archives of Arctic permafrost mobilization dynamics with temperature change. 
    more » « less